Mark Scheme Energy Past Paper Questions

Jan 2002 to Jan 2009

- 5(a) decreases for the first four seconds ✓
 zero for the remaining six seconds ✓
 Q5 Jan 2002 (2)
- (b) $E_{\rm k} = \frac{1}{2} \times 1.4 \times 10^{3} \times 16^{2} \checkmark$ = 1.8 × 10⁵ J \checkmark (accept $v = 15 \,\mathrm{m \, s^{-1}}$ from misleading graph and $E_{\rm k} = 1.6 \times 10^{5} \,\mathrm{J}$) (2)
- (c) (use of P = Fv gives) $20 \times 10^3 = F \times 30 \checkmark$ $F = 670 \text{ N} \checkmark$ (2)
- 6(a) loss of potential energy = $m \times 9.81 \times 6.0$ gain in kinetic energy = loss of potential energy \checkmark $\frac{1}{2}mv^2 = 58.9 \text{ m gives } v = 10.8 \text{ (m s}^{-1}) \text{ (\approx11 m s}^{-1}) \checkmark$ (3)

Q6 Jan 2002

(b) loses potential energy (as it moves to B) ✓
gains kinetic energy (as it moves to B) ✓
regains some potential energy at the expense of kinetic energy
as it moves from B to C ✓
some energy lost as heat (due to friction) ✓
(4)

Q7 Jun 2002

7(a)(i)
$$E_p = mg\Delta h \checkmark$$

= 5.8 × 10⁻² × 9.8(1) × 1.5 = 0.85 J ✓

(ii) 0.85 J \checkmark (allow C.E. for value of E_p from (i))

(iii) (use of
$$E_k = \frac{1}{2}mv^2$$
 gives) $0.85 = 0.5 \times 5.8 \times 10^{-2} \times v^2 \checkmark$ (allow C.E. for answer from (ii)) $(v^2 = 29.3)$ $v = 5.4 \text{ m s}^{-1} \checkmark$

(iv) (use of
$$p = mv$$
 gives) $p = 5.8 \times 10^{-2} \times 5.4 \checkmark$
(allow C.E. for value of v from (iii))
= 0.31 N s \checkmark (7)

(b)
$$\left(\text{use of } F = \frac{\Delta(mv)}{\Delta t} \text{ gives}\right) F = \frac{0.31}{0.010} \checkmark$$
(allow C.E. for value of p from (iv))
$$= 31 \text{ N} \checkmark$$

[or
$$a = \frac{5.4}{0.010} = 540 \text{ (m s}^{-2}) \checkmark$$

 $F = 5.8 \times 10^{-2} \times 540 = 31 \text{ N} \checkmark$] (2)

(c) egg effectively stopped in a longer distance ✓
hence greater time and therefore less force on egg ✓
[or takes longer to stop

hence force is smaller as $F = \frac{\Delta(mv)}{t}$]

[or acceleration reduced as it takes longer to stop thus force will be smaller]

[or some energy is absorbed by container less absorbed by egg]

(2) (11)

(a)(i) (use of
$$E_p = mgh$$
 gives) $E_p = 70 \times 9.81 \times 150 \checkmark$
= 1.0(3) × 10⁵ J \checkmark Q4 Jun 2004

(ii) (use of
$$E_k = \frac{1}{2}mv^2$$
 gives) $E_k = \frac{1}{2} \times 70 \times 45^2 \checkmark$
= $7.1 \times 10^4 \text{ J} \checkmark$ (7.09 × 10⁴ J) (4)

- (b)(i) work done (= $1.03 \times 10^5 7.09 \times 10^4$) = $3.2(1) \times 10^4$ J \checkmark (allow C.E. for values of E_p and E_k from (a))
 - (ii) (use of work done = Fs gives) $3.21 \times 10^4 = F \times 150 \checkmark$ (allow C.E. for value of work done from (i)) $F = 210 \text{ N} \checkmark$ (213 N) (3)

Question 2			
(a)	(i) (ii)	(gravitational) potential energy ✓ to kinetic energy ✓ both trolley and mass have kinetic energy ✓ mention of thermal energy (due to friction) ✓	2006
(b)		masses of trolley and falling mass ✓ distance mass falls (or trolley moves) and time taken to fall (or speed) ✓	2
(c)		calculate loss of gravitational pot. energy of falling mass (mgh) ✓ calculate speed of trolley (as mass hits floor), with details of speed calculation ✓ calculate kinetic energy of trolley ✓ and mass ✓ compare (loss of) potential energy with (gain of) kinetic energy ✓	Max 4
		Total	10

Question 2		
(a)	potential energy to kinetic energy ✓ mention of thermal energy and friction ✓	2
(b)	(use of $\frac{1}{2}mv^2 = mgh$ gives) $\frac{1}{2}v_h^2 = 9.81 \times 1.5$ \checkmark $v_h = 5.4(2) \mathrm{m s}^{-1}$ \checkmark (assumption) energy converted to thermal energy is negligible \checkmark	3
(c)	component of weight down the slope causes acceleration ✓ this component decreases as skateboard moves further down the slope ✓ air resistance/friction increases (with speed) ✓	max 2
(d) (i)	distance (= 0.42×5.4) = $2.3 \text{m} \checkmark (2.27 \text{m})$ (allow C.E. for value of v_h from (b)) Q2 Jun 2006	
(ii)	$v_{\rm v} = 9.8 \times 0.42 \checkmark$ = 4.1(1) m s ⁻¹ ✓	5
(iii)	$v^2 = 4.1^2 + 5.4^2$ $v = 6.8 \mathrm{m s}^{-1}$ \checkmark (6.78 m s ⁻¹) (allow C.E. for value of v_h from (b))	
	Total	12